A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium

نویسندگان

  • P K Lauf
  • N C Adragna
چکیده

Swelling-induced human erythrocyte K-Cl cotransport is membrane potential independent and capable of uphill transport. However, a complete thermodynamic analysis of basal and stimulated K-Cl cotransport, at constant cell volume, is missing. This study was performed in low K sheep red blood cells before and after reducing cellular free Mg into the nanomolar range with the divalent cation ionophore A23187 and a chelator, an intervention known to stimulate K-Cl cotransport. The anion exchange inhibitor 4,4'diisothiocyanato-2,2'disulfonic stilbene was used to clamp intracellular pH and Cl or NO3 concentrations. Cell volume was maintained constant as external and internal pH differed by more than two units. K-Cl cotransport was calculated from the K effluxes and Rb (as K congener) influxes measured in Cl and NO3, at constant internal K and external anions, and variable concentrations of extracellular Rb and internal anions, respectively. The external Rb concentration at which net K-Cl cotransport is zero was defined as flux reversal point which changed with internal pH and hence Cl. Plots of the ratio of external Rb concentrations corresponding to the flux reversal points and the internal K concentration versus the ratio of the internal and external Cl concentrations (i.e., the Donnan ratio of the transported ions) yielded slopes near unity for both control and low internal Mg cells. Thus, basal as well as low internal Mg-stimulated net K-Cl cotransport depends on the electrochemical potential gradient of KCl.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Thermodynamic Study of Electroneutral K-C1 Cotransport in pH- and Volume-clamped low K Sheep Erythrocytes with Normal and Low Internal Magnesium

~Ev w o RD S: K-C1 cotransport 9 sheep erythrocytes 9 thermodynamics 9 magnesium 9 DIDS-pH-clamp I N T R O D U C T I O N K-C1 cotransport , a secondary active t ransport pathway, occurs in cells of the erythron such as nucleated red blood cells, reticulocytes, and young red blood cells of a variety of species, in endothelial cells, in certain epithelial cells, and in fish liver cells (reviewed ...

متن کامل

Kinetics of Cl-dependent K fluxes in hyposmotically swollen low K sheep erythrocytes

A detailed kinetic study of K:Cl cotransport in hyposmotically swollen low K sheep red blood cells was carried out to characterize the nature of the outwardly poised carrier. The kinetic parameters were determined from the rate of K efflux and influx under zero-K-trans conditions in red cells with cellular K altered by the nystatin method and with different extracellular K or Rb concentrations....

متن کامل

Swelling activation of K-Cl cotransport in LK sheep erythrocytes: a three-state process

K-Cl cotransport in LK sheep erythrocytes is activated by osmotic swelling and inhibited by shrinkage. The mechanism by which changes in cell volume are transduced into changes in transport was investigated by measuring time courses of changes in transport after osmotic challenges in cells with normal and reduced Mg concentrations. When cells of normal volume and normal Mg are swollen, there is...

متن کامل

Volume-Sensitive K+/Cl− Cotransport in Rabbit Erythrocytes

The kinetics of activation and inactivation of K(+)/Cl(-) cotransport (KCC) have been measured in rabbit red blood cells for the purpose of determining the individual rate constants for the rate-limiting activation and inactivation events. Four different interventions (cell swelling, N-ethylmaleimide [NEM], low intracellular pH, and low intracellular Mg(2+)) all activate KCC with a single expon...

متن کامل

Basolateral membrane Cl(-)-, Na(+)-, and K(+)-coupled base transport mechanisms in rat MTALH.

Mechanisms involved in basolateral HCO transport were examined in the in vitro microperfused rat medullary thick ascending limb of Henle (MTALH) by microfluorometric monitoring of cell pH. Removing peritubular Cl(-) induced a cellular alkalinization that was inhibited in the presence of peritubular 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and blunted in the absence of external CO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 108  شماره 

صفحات  -

تاریخ انتشار 1996